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A b s t r a c t  

Xodels of the main geomagnetic field are generally represented by a 

scalar patentid y 

In the last decade, such m o d e l s  have been derived maldy by a recursive 

Iteration method from tbe field.mgnltude F observed by sa t e l l i t e s  i n  
lw-altitude polar orbits. Very accurate observations of F were :sed, 

but indications exis t  that  the accuracy of models derived franthern is 

cons1dt;a'Oj lower. One problem is thgt F does nut always characterize 

7 uniquely: Backus has derived a class of countexwramples in  which two 
different choices of y correspond t o  the s~me F It I s  not clem 

whether such ambipity can be encountered i n  derM.ng y from F i n  
geomagnetic surveys, but there ex is t s  a connection, due t o  the fac t  that  

the counterexaqles of Backus are related t o  the dipole field, while the 
geomagnetic f i e ld  is dominated by its dipole canponent. If the models are 

recovered with a f in i t e  error  (i.e. they cannot completely f i t  the data 
and consequently have a smell  apurious caarganexrt) t h i s  cannectlon allows 

expanded i n  8 finite nuniber of spherical harmonics. 

the error i n  certain sequence& of harmonic tenns in y t o  be enhanced 
without unduly large effects  dn thc f i t  of F t o  the model. Computer 
rimulations have demonstrated t h i s  effect,  producing 88 8 result 
models which f i t  the data of F 
fi t8 t o  the direction of the magnetic vector. Possible remedies are 
discusc,~. A n  appendix a l s o  discusses a particdar class of f ie lds  - 
related t o  tha counterexamples of Backus - fo r  which it can happen t ha t  

the recursive i terat ion deriving y from F does not converge to thd 

correct solut ion . 

quite closely but yield much poorer 
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I N T R O D U C T I O N  

In  order t o  derive a gecera2 ve~ i ; c . ,~  ? le% I n  scace, th ree  ine?epr.cler.t 

scalars n i ls t  be observed a t  esch ~oFn': - e . ~ .  3 or thogond cC)qOnz?ts, 

or the f i e l d ' s  magnitude and t u o  =i&z defining i t s  directior..  F ' x  thc  

=in geomagnetic f i e l d  B - i . e .  the which or iginates  deeo inside 

the  ea,rth - such m observation i s  redumiant, since t h a t  f ie ld  :s comple- 

te ly  defined by a sca la r  po ten t i a l  7 

- 

- B =  - V Y  

The information needed t o  derive B nay 3hus be given by a singlr  

sca la r  fuz-tion of position. In f ac t ,  there exists the  addi t iona l  con- 

s t r a i n t  t h a t  y must  be harmonic ; t h i s  may be viewed as reduzing the  

"information content" of 
since only 2 indices appear i n  the  spher ica l  harmonic expansion of y , 
t r ad i t i ona l ly  wri t ten as 

e -- 

y t o  t h a t  of a two-dimensional scalar f u u c t i m ,  

m=n 

n = l  m=O 

( a i s  the  ear th ' s  radius). I n  s a t e l l i t e  stirveys it is re l a t ive ly  easy to 

m?asure accurately - one of t h e  three sca l a r s  associated with the  field, 
namely the  magnitclde , c~mmoQy denoted i n  geomagnetic literature 
by the  c a p i t z l  l e t t e r  F . Accurate observation of F requires nei ther  

information on the  a t t i t ude  of the observing spacecraft ,  nat observation 

cf the  f lexing of t he  boom carrying the magnetometer ; such information 

required f o r  accurate determination of the field's direct ion,  which con- 

sequently is  much harder t o  perform. 

Furthermore, satellites conducting surveys of the f i e l d  generally do not 

vaiy the$;* a l t i t ude  by great  amounts, so t h a t  their observations of F tend 

t o  bc dis t r ibu ted  more o r  less over a two-dimensional surface - t h a t  af 
a sphere concentric with the  earth.  The przceding q u d i t a t i v e  areuments do 

however cuggest t h a t  t h e  amount of infornation thus ,gathered may suf f ice  t o  

determine the  f i e l d .  
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Tbis has led t o  attempts t o  trade one scalar fo r  the other, i .e .  t o  
derive y frm observations of F (of course, o5served da'Ya must fiyst 
be "cleaned" 

is nut considered here). buds [ "9583 qpears  t o  have been the f i r s t  
t o  propose t h i s  approach and i t s  first major use occured in the ar?alySis 

of vanguard 3 data by --- cain  e t  tit. [SI .- The derfvation oz waels  of 

the main field from s a t e l l i t e  data has generally been based on F 
[ Eeppner, a ; Cain et _e., 1967 ; Cain, 1971 I, i n  particular the 

models derived from observciticn.: of OGO 2,4 and 6 [Cain -- ar?d Sweeney, 
=I . The method used in siich work is described further on . Because 

F ;.s easily observed down t o  intensi t ies  of 1 y ( = 10 -5 gauss ) t h i s  
hat beccnne tb method of choice fo r  mapping the  geomagnetic field and n e e l s  
which f i t  obsemed F within &'I r.m.6. deviation of 4 - 7 y have been 
derived by it, 

of fields of external crigin, h 5  55is impoi5ar.t point 

However, two problem6 arose - one experimental, the other theoretical. 
Experimerrtally, the f e w  observations i n  which the vector direction of the 

f ie ld  could be c-ed t o  the model indicated cansideratXe deviations 

[Cohen, - ; WO-, m] LUSO, tihe results of airbmw surveys 
indicate (J. Cain, private coarmunication) that  f i e l d  components often 
deviate by 100-200 y from the values prescribed by modgls. 

The theoretical  diff icul ty  w a s  po l - ted  out by 2. Backus [s, X O ]  
F observed on a sphere uniquely who investigated the question of whether 

defines the scalar potential y from which it car, be derived. If the 

1968 3 tha t  F and y are uniquely related. However, i f  an Infinite 

number of terms is  &owed, that  assertion turns out t o  be false  and 
Backus [ Z O ]  furnished a class of counterexamples in which two quite 
dis t inct  inf ini te  expansions, similar t c  (2), yield identical  forms of 
F on the unit  sphere r = 1 

Backus expension (2) contahs a f i n i t e  number of terms it may be shown [ -' 

This discovery has cast some doubt on the assertion that  the  getwnag- 
net ic  scalar pcrtential 7 i s  uniquely derivable i m m  i t s  corresponding 
F So far, t h i s  question has not been resolved. 



what the present work shows ,s tZlp;', the exgerimental d k c r r t p c i e s  
the p-eCic%ions of the r d e :  zkay between vector field obsenratioas 

have a mathematical origin, related to tk 

it viU. be shown that when perfect recover. f y is not possible - 
due t o  finite Obszmatians?. errc s of v a r i s ~  origins - etA each ~f the 
coefficients of (2) cOrrtainS a certain error, then this error is enhanced 
for certain sequences of tenns re'cated to those deriv2d by L.rackus. The 
basic reason for the connection is that the cotfIyte=xauxples constructed 
by Backus are related to the dipoh field, w h i l r t  the geomagnetic fiel.2 
is known t o  be dunhated by I t s  dipole component, Computer simulations of 
the effect sad possible remeUes w i l l  also be described, 

.-X of' Backus. Spe:ifically, 

T L E  C O U l T E R E X A M P L E  O F  B A C K U S  

-- Backus [ l970] sought to detennine whether it w a s  possible, in 

ant~ +* I three dfigensional space, t o  find two harmonic functions 
vanishing at ixrf'2qity and differing by more tbsn their 8lgebrSic signs, 

such that on the unit sphere r = 1 

9, 

He found it convenient to reformulate the problem in terms of the sum 

u and the difference v of these functions, which an r * 1 have t o  

8 8 t i S -  

Choosing u t o  be the Upole potential 

u =  C 0 8  8 /r2 

then examined the coefficients to uce wbther they could be raa&e t o  
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sa t i s fy  ( k )  Not only d X  f M s  ?.:xi otrt t o  be possible b k  e whole class 

of such solutions w a s  founC t o  cxls5. The general  form of these solutions 

is best expressed if  me intercfiz,?ces the sumnstions of equation ( 2 )  

end writes 

G z  ( a / r ) n + l  ? ( e )  + n v = cos m'Q 

m=l n=m 

where f o r  sake of def ini teness  t h e  leading t e r n  i n  each of the  sumations 

Over n is set e2ua-l t o  unity 

c ; m =  € P = 1  m m 

Then, provided the  se r i e s  i n  t h e  in'ier summations are su i tab ly  chosen 

(there exist two such 5l;mmations f o r  eazh value of m , and they are 

actually t h e  same - i.e. 8 = d") , equation (4) is s a t i s f i e 3  f o r  any 
arb i t ra ry  choice of the  coeff ic ients  a and bm The series over n 

are derived by recursion from t h e i r  leading terms, and s ince  these terms 
are fixed by (71, t he  series are unique. They are described i n  more 

d e t a i l  i n  Appendix I and contain nonzero terms only f o r  values of n 

n n  

m 

and m which sum IQ t o  an even number. 

S t r i c t l y  speaking, (6) satisfies ( 4 )  only i f  an i n f A  {nitite number of 
terms is used. We shall denote t h i s  l i m i t  of v by a superscr ipt  00 

and write 

If the  number of term i n  v is f i n i t e ,  (8) no longer holds; how- 

ever, the  sca l a r  product contributed by such a truncated 

by a S ' J P r s C r i f l  f fo r  " f in i te" )  may be small if v O0 is  approach& 

v (denoted 
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brevi ty  - all small q::antitics ?ky & ; 3t ?cas', 3 d i s t i n c t  quzn t i t i e s  cf 

t h i s  s o r t  appear, but devr2ting t o  .?.:1? of %hen a sx ra t e  n!Y,ztim ncreQ- 

encumbers t h e  expressions and y i e lds  30 new results. The magnitude of 

the  r lgh t  hand s ide  or' ( 9 )  depend; on the exact Tor?? of 

par t icu lar ,  on t h e  number k of terms i n  t h e  sho r t e s t  smmattrons over 

n which appear i n  it . If k i s  s u f f i c i e n t l y  la rge ,  however, the  

expression ( 9 )  may be nude arbitrarily small. 

f v - i n  

M O D E 1  D E S I V A T I O I ?  F R O M  S C A L A R  D A T A  

In  t he  der ivat ions 02 models of t h e  nain geomagnetic f i e l d  from a s e t  of 
observations or' F = I v y 1  , t h e  value 02 y is determined by i t e r a t e d  

l inear iza t ion ,  s t a r t i n g  from an i n i t i a l  approxhat ion y of the scalar 
potential .  Let E y be the correct ion t o  be added t o  7 i n  order 
t o  obtain the  %rue p o t e n t i a l  

0 

1 0 
y 

Y = Yo+ & ?  
1 

Then 

= 1 {" - ( vyo)2} - 2 € *  ( V Y  l2 
2 2 1 € VY VY0 

J. 

If t h e  term of order f 2  is neglected and 7 is expanded i n  a 
1 

f i n i t e  s e r i e s  of form (2 )  with N unknown coeff ic ients ,  then  (11) 
represents one l i n e a r  equation with 

which an obseriation of F was made. 

N unknowns f o r  each point at 

Typically t h e  number M of such observations greatly exceeds N If, 
f o r  instance, the  ce r i e s  (2)  f o r  y is truncate6 past n = n , then max -~ 1 

I 
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Typic-, n = 10 , N = S 3  , while t he  number of equations (one 

f o r  each observation of F) mzy be 0.' the  order of 10,OOO . The j e s t -  

f i t t i n g  s e t  of coefficier, ts  f o r  y I s  the?. derived by least squares 

f i t t i n g ,  a f t e r  which one replzces yC by. ( y o +  € y  and repeats 

the  process, seeking a fu r the r  n o ~ r e - . t i o n  term 

continued u n t i l  t he  r .m. s .  d i f f e r e r i e  between observed values of F 

and those ob-caineh f ron  the model no longer shows any improvement. 

Various refinements may be included, e.g. dividing each of the equations 

(11) by Ivr,l 
i n  polar regions, khere F 1s l a rger .  

max 

7 - 
1 . This  yrocedure is yll 

i n  order t o  avoid giving grea te r  weight t o  observations 

Cases are  known i n  whic5 t h i s  procedure does not Lead t o  the correct  

solution !App?ndix 11), b u t  i n  analysis of simulated data from models 

representing the  geomagnetic I ' i e l Z  this method tends t o  converge rapidly 

- t o  t he  "correct," solution, if '  t h e  derived series is capable of ex- 

pressing it, o r  t o  a s m a l l  range cif  f i n a l  parameters corresponding t o  

a ' b e s t - f i t t i ng  ser ies"  if t h e  da ta  contain unresolved higker harmo-iics 

o r  other sources of s m a l l  er ror .  

E R R  O R  E N H A I J C  E M E N T  

The basic  equations used i n  the  i t e r a t i o n  are 

- - 2 (3 - ( V Y o ) 2 }  
m y o -  V Y  1 2 

with one such equation being contributed by each observation point. 

These equations w i l l  lack a unique solut ion if the  set  of equations 

= o  
1 

V r o o  VY (14 3 

(13) 

evaluated f o r  $he same points,  

one solution of (13) , new solutio::s may be oSttrined by adding t o  it 
arbitr;tis. multiples of solut ions of (14) . 

have a solution. In t h a t  case, given 
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I n  this  sect ion t h e  f i n i t e  spread ir, t h e  racial distance r will 

be neglected ( i ts  e f f e c t s  are considerr.d separately lcter cn'. L.:: 

now be separated i n t o  a dipole part and a non-d:?cle pezt 

where E <&\ is yet another s m a l l  quantity. 

~f an 5xact solut ion f o r  equations (13) does not ex i s t  - due t o  

truncation, e.xperinenta1 e r r o r ,  unresolved contributions of ex te rna l  

f i e ld  sources e t c .  - then t h e  %est f i t t ing" r e s u l t  f o r  

of the  sum of +,he "true solution" 

w i l l  be expressed by a f i n i t e  series similar t o  the one i n  eqx&ion ( 2 )  . 
One can then write 

y 

, each af: which 

will cons is t  
1 

% yt and an "error" 

€ h Y d  + v Y n d ) 4 V Y t  + VY,) N 1  - - (9 - ( V Y , P j  2 

where 

our pa r t i cu la r  s e t  of observations ) 

w i l l  s i gn i fy  'hoest f i t t i n g  by t h e  least squares mtk.od" ( f o r  

of form (2; can I n  t u r n  be resolved i n t o  'e :?ow a f i n i t e  series 
of "Backus terms" s imj l a r  t o  those !.n (6), plus 

of independent harmonics. To perforx such R separation one 

n = m 

'eb two parts: a sum 

8  urn y 

first i s o l a t e s  a l l  terms with 
e i  

and includes them i n  y eb , while 
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t h e  remaining terms &re asslgned t o  y . 3ach of t h e  t e r n  I n  y is 
now viewed as the  leading Germ of d Backus-type series of the type l i s ted  

i n  equatiun ( 6 )  ai:- i n  Appndix Z (including the coe f f i c i en t  a or  m 
bm multiplying such a series), and appropriate higher-orc?er terms are 

added t o  it tc form t h e  res% of I t s  serizs, up t o  t h e  highest  n ard 
m allowed by the  f i n i t e  exp-m,sion o? y ; .Lo maintain t h e  balance, 

t h e  same term t h a t  are  added t o  yeb are subtracted from 7ei . 
FinzlPj, those expus ions  Ln 

t o o  few t e r n s  f r r  ( 9 )  t o  be v a l i d  (with t h e  r i g h t  hend side s m a l l  enough) 

a re  t r ans fe r r ea  from 

those Backus series which contain only one tern - and perhaps a l s o  those 

containing two - Equation (IC;> now may be wri t ten 

e i  eb 

' eb 

deerl7ed t o  have ( a f t e r  t runca t ion )  'eb 

t o  yei This w i l l  c e r t a i n l y  include a l l  'eb 

The con'ributions of the e r r o r  terms t o  t..e l e f t  han side are mainly 

due t o  sca l a r  prciucts  with t h e  dipole term, which overshadows t h e  

non-dipole term. If all coeff ic ients  involved i n  y and yei were eb 
,?qual, then t h e  contributi.cn t o  t h e  scalar product associated with a 

w i l l  on t h e  average be one order i n  & smaller 
'eb c z i - f i c  i e n t  of 

t h a  %k contribu'Gion associated with o x  of the c , \ e f f i c i en t s  of y 

s ince  J V  equaLion ( 9 )  
e i  ' 

t ne  former conti .bution gains an extra order in & 

Altzmatively,  if  t he  least  squares optimization adjcsts dl sources 

of e r r o r  so  t h a t  +.hey contribute approximately equally, then t h e  meff ic i -  

en t s  of 7 

of 

w i l l  be - l a rge r  by a f a c t o r  of t h e  order of E-' than those 
eb 

7ej , leading t o  an enhanced e r r o r  in these terms. 

A d i f f e rnn t  view of t h e  same effect is  gained by writing t h e  basic  

relation p r i o r  to  l i n e a r i z a t i o a  



- 10 - 

When the  leM. hand s ide is expmiied i n  orzers of E , ?.he €' t e rn  
is simply (VYdf2  and al l  O ( e  

bute t o  t!ie term of order & , excefl fcr 
contributes at the  E. Level . Thus ?- I; f5?-nnf.3v less scnzi t ivc 

t o  f luctaat ions of y , allowing its errors  20 be re l a t ivc ly  lay?? 

without exzessive e f f e c t s  on the fLt of .Fi' In tu i t ive ly ,  the BzcKu. 

Peries m a y  be viewed as nodes at which a near-dipole f i e l d ,  Zerived : , T I  

t he  manner described here> prefers  t o  fluctue.5e - j u s t  8.5 n bridge o r  ci 

beam tend t o  o s c l l l s t e  i n  c.ex-t;ain modes re la ted  t o  t h e i r  geometrical 

properties.  

t e X m  G f  the  sc&lar  p o t e n t i d  contri-  

r'kich due +,o ( 9 )  0nl.y Ye5 9 'j 

eb 

S I M U L A T I O N  

A test of the preceding argument was performed 9s follows, A 120-term 
e x p a x i c n  of 7 (c = I C  was used t c  deyive t h e  corresponding values 

of F c,t 1 U C  points on the unit  sphere. A program endqvzing these 

simulated d&a by t he  F7eviousl.y described method was then applied, b u t  

t he  4erived modes contained on%, 63, 8G or  9 terms (n- = 7, 8 or  9 ) .  
Up t o  10 i t c r a t ions  were performed, a3-though the model generally showed 

l i t t l e  var ia t ion  d t s r  the  becond i te ra t ion ;  the resdts c i t e d  here 

therefore r e fe r  t o  the  f i t  axfter 2 i te ra t ions .  As a check a d i f fe rer . t  

input Cor 2 was used and sinilar e f f e c t s  were observed, &'.though they 

w e  not incluikd i n  the  r e s u 3 . t ~  l i s t e d  here. 

C l a X  

w a s  derived f o r  t he  Fm r?.om tbe  uodels, the predicted i rkens i ty  

lWI0 in-put point and at, each point t he  deviation 

was compLted. Thc quaiitity 6F/F 
also found 8113 :?. repressntative t a b l e  of its values at every 3rd point 

was pr.',nted out, from which the  worst (i.e. largest)  value was picked 

v-isually. In  addjtion, the  m e a  angle S A  
f i e l d  a b  the  t rue f i e l d  WRS wriv?ci: it is  3f t h e  s8me order AS the  

r e l a t ivc  discrcwncy i n  one of t h e  components of I- B . As before, 
the w3rs.I; C G S ~  was aiso pj-ked out v i s u d l y  from &' representative table .  

was then der(ved, Its aver%--. was 

( i n  radiens)  between the Fadel 

3i/ Bi 
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The resul5s  arc gtven i n  Table 1 ?he rc lat ivl t  accuracy cf %he drrect ion 
is mor: t h m  10 tix’s worse than t h a t  of the rragnitude, m d  t h e  worsr, fit; 

LI d i rec t ion  has an e r r o r  about 10 t9.es l a r g e r  still .  This i s  zn ef icc t  

sli@tv l a r g e r  t.hw, what i s  fomli. x i t h  mdels of t h e  geoz~zgnet~c  

f i e l d .  

Inspection of t h e  coeff ic ients  revealed that t h e  e r r o r  i n  t h e  derived 

models indeed cmtained r e l a t i v e l y  l z q e  contributions from the Backus 

sequences e For t h l s  purpose t h e  differences 

the  harmonic coe f f i c i en t s  of t h e  model p o t e n t i a l  and those of the  poten- 

t i a l  used as input were tabulated.  The c a e f f i c i e n t s  sequences 

and A h n  rn between 
b g: 

ana 

correspocding t o  terms wh!.ch p d i c i p a t e  i n  a single Backus s e r i e s  ab1 

invariakly showed the  cha rac t e r i s t i c  a l t e rna t ion  of signs between coibecu- 

t i v e  f s ’ r m ~  uhfch is  t y p i c a l  of any such series. Furthermore, when t h e  

ra t io  R af any such  term t o  t h e  leading term of i ts  beries i s  compared 

t o  t he  correpponding r a t i o n  % for t h e  Backus series (Table 4) , t he  

two r a t i o s  are roughly similar. 

R e T u l t s  from t h e  t e s t  for  some of these  sequences, as well as f o r  
some terns not belonging t o  any sequence, a r e  shown in Table 2 . As can 

b? seen, some of the sequences grow t o  r e l a t i v e l y  Large amplitudes 

( c o g .  the  gz series f o r  99 term recovery, t h e  g3 
2 3 

recovery) , others (e.g.  the one headed by 

f a i l  to develop. 

series for 80 term 

ha 
2 

i n  the 99 t e r n  case) 
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P O S S ~ B L E  R E M E D I E S  

The comterexamplec discoverw2 by Backus  satisfy equation (4 )  only on 

a single spherical  surface. If observations a re  d is t r ibu ted  over a f i n i t e  

region i n  three dimensions, t he  series (6) no longer sat isFy ( h )  over the  

en t i re  region of observation and it is t h u s  possible, i n  pr inciple ,  t o  

overcornc the  problem described e a r l i e r .  Xn f a c t  Bsckus proved [ Bzckus,  

] t h a t  equatfoz ,(14) cannot be s a t i s f i e d  over a sphericai  shell of 

any f l . n i t i  thickness, 
I. . $ * . A  rr 

In prac t ica l  obserqations such a three  dimensionality always exists 

due t o  the f i n i t e  eccent r ic i ty  of the  o r b i t  of t he  observing satallite. 

For those s a t e l l i t e s  or" t h e  030 se r i e s  which were used for geomgnetic 

surveys t h i s  eccent r ic i ty  was ra ther  small: the  a l t i t ude  range (above sea 

l eve l )  vas about 400 t o  1503 km f o r  OGO 2 , &!E t o  900 km f o r  OGO 4 and 

400 t o  UOO km f o r  OCrO 6 . Unfox%unately, it appears that in t he  presence 

of f i n i t e  e r ro r  such a var ia t ion i n  a l t l t ude  is m l y  able to reduce SOIT.%- 

w h a t  the  e f f ec t s  described i n  t h i s  work and w i l l  not eliminate thelll 

al together . 
Suppose observations are czL?Lncd t o  a spherical  shell with 

If 6 r/r = O( E 1 , then equatlon (9) - which is the one relevant 

here - may s t i l l  bo used, f o r  by Twlor expansion 

If u and v catlsf 'y (9) on the sphere r = r then the  above 

equations show t h e t  they aaticPj a f .aiiar equation over t he  e n t i r e  
spherical  shell, although the "smallness" of the  r igh i  2 a ~ C  zidc i s  

0, 
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As a test, the W t e E  recovery of the 12Cb';em nodel, USCC it. 

te3les 1 and 2 , w a s  =Fa ted  u i t h  Cata pi-.% oszilhtiq v:c a f -ki te  

range i n  rzdial E i s t a x e ,  cmparable t o  th& of tke OCO or%its. A 3 i s t i n t t  

improveErt Fn the ag-dar resolution vas obtained kibk 3)  but t-bere 

stin exists 2 prono-mced Ciscrepmcy betwen &F/F and 62 ( tbe 

values of aF/F deteriorate samwht with increasing 6 r  , probably 
becau-e the  "error" is an unresolved set of 
of which iccrezses rapi- for  those points at uhixh 
If an analysis similar to that of table 2 is prforcred, it is found 

tha t  the Backus series are still erha?ced, although the ratios 
further frm those in table 4 . 

n = 10 terms, tf;e co?ltrLb*Jtion 
r is a i n z s h e d ) .  

R depart 

#ore generally, the addition of SQIE veztor data t o  the data set  can 

ia gzneral help resolve the problem. In such cases it might be useful ta 
separate the model potential y *rived f r a m  F into two parts y& 

and ymi , in a similar way to the  resolution of y in (16) into its 

tu0 pwts  7 and yei in (17). Qle q then assme 7mi t o  be accu- 

rately uerived from F end use the added data for deriving ymb a'.one. 

m 

e 

eb 

Suppose for example th&t one is  given as added vector data an accu- 

rate location of the dip equator on the surface 

equator 
summztions uher: (7) is assumed) 

r = a On the dip  

a r / a r  = 0 wd therefore, by (6) (noting the equality of the tuo 

Here the l e f t  hand side is knovn, the coefficients are qiven in 
table 4 8x-d the unknowns t o  be derived are the factors am & bm 9 If 
the s-ariation of e is neglected k m n u h g  it t o  be near 3 /21  the solution 
of (20) reduces to t3e expansion of a given function of 'Q i n  a Fourier 
series. In practice, with 8 

am 

kept as variable, the simplest ww of deriving 

and bE wouM 3e by least squares f i t t b g  of (20). 



The published form of the counterexaqle of Backus [ Backus, ly[O] 
xrma2izes the k g e n h  functions F" i n  %e zaxner preferzd  by 

mathe-aaticians end eqresses the depn&nce or: the longitude angle \Q 

in t e r n  of complex exponentials. Far coxquter programs it i s  m;ch 

zzrc :zr.*crLzzt tc z5cp k u s s i a n  normalization, which avoids the  

need t o  caba la te  sqaare  roots when der5ving either spherical harnonics 
or recursion coefTicients. It is a lso  more cotventional ?.n geomxgnetic 
rrsage t o  express the dependence on \9 by means of cos m? ar,d sin zx'f 
(as i n  equation 2 )  instead of 

appendix is t o  list; som? propr%ies  of the Backus counterexamples wher! 
these are expressed in Gaussian nonnallzation with trigonometric 

coefficieats i~ 'Q . 

n 

exp ( 2 i m V >. The purpose of t h i s  

The general form or' the counterexample is gives in  equation { 6 ) ,  
and if condition (7) holds, then the two series there are l&entical - 
i.e. G: = $p . The basic recursion relation for either of these series n 
is, w i t h  Gaussiau normalization, 

A similar recursion holds f o r  Ii", ; if (7) 4 s  assumed, the results 
of this recursion are sham i n  Tab12 4 . N o t e  that in all terms involvcd 
here the sum of indices is even; tenas for which t h i s  sum is OrIA vanish 
ldent ically.  

Table 4 shows t h a t  for  &!i given m , the tnagnituae of the coeffici- 
ents increases with increasing l m e r  index n The r2sultiW series 
nevertheles., do converge (p.6 was shown by Backus), because the normali- 
zation factors entering $ 
Gaussian normalization the $ fo r  any given m 
generated by a rewrsion rele+,ion star t ing from 

also contribute to the convergencc-. For 
are most conveniently 
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The r e l a t ion  is 

pm ( 0 )  = cos9  ?(e) n + A;<-l(e) n+ 1 

where 

(A-1-2 1 

(A-I-3) 

(A-I-4) 

(A-1-5 1 

The derivat ives  are obtained by recursims ?oimC traZ the above ones 

by d i f f e ren t i a t ion ,  starting with 

(A-1-61 m-1 iQa8 = m cos8 sin 



APPENDIX I1 : CASE IN WHICH ITEXATION FAILS. 

it w a s  noted that in practice the i te ra t ion  (13) tends t o  converge 

rapidly t o  an "optirnal model" of the f i e l d  : the purpose of this 

apGidix is t o  point out a case i n  which this is not true* The exmple 

given is closely related t o  the work of Backus [ X O ]  and is probsbly 

rather atygical, but it does show that ( 1 3 )  is  not universally useful. 

k t  +y and 4-  be two putentials of the Bnckus type, 
2 

satispjing an r = 1 the conditicn 

I& and + ," be truncated versions of these series, with all 

terms having uppe;. indices exceeding n cmitted, and let 

(A-11-2 

By the theorem of Backus proving the uniqueness of the relation 

between 7 and F fo r  potentials with a f i n i t e  number oi harmonic 

tenus [Backus, , $ 1 uniquely characterizes +; and F" 2 

uniquely characterizes #" However, as n +oO , both I? and F" 
2 1 2 

tend t o  F and therefore, for  large values of n the difference 

betwean the two becomes rather smaU. 
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This suggests t ha t  

Fn or fl , with n 

experience diff icul ty  
1. 2 

if the input t o  the recursion (13) consisted of 

large enoug!!, the recursive i terat ion might 

i n  tellfag the two apart - e,g., given F" , it 
1 

might s t a r t  converging t o  e i ther  

i n i t i a l  choice of yo . 
, depending on the 

This is confirmed bj computer simulations with F generated by 

&term expansions and the least-squares i t e ra t ion  capable of resolving 

an equal nmber of coefficients. If the program deriving the m o d e l  of 

y 

If' the i n i t i a l  approximation resembles 

is presented by such an 8 
1 

, one of two things is found t o  occur. 

more than it resembles 9': 
t# 

, the recursive i terat ion w i l l  rapidly converge t o  the correct 

coefficients. If, however, the i n i t i a l  approximation is nearer t o  

the coefficients w i l l  tend t o  evolve towards those of 

t ion  then never converges - the search being conducted in the  wrong 

range of parameters - and irrstead the velues of the output coefficients 

wander within a f i n i t e  range around those of 9 . 

t n  , 2 

9" !Phe itera- 
2 

2 

For a recursion deriving 48 term expansions, each resulting 7 

in w;s be viewed as defining a point i n  a 48-dimensional space 

which eaA coefficient corresponds t o  one coordinate, and (13) mryr be 

v:'cjwe;L as prescribing a mapping cf each point in 

potnt there. If the field magnitude used as input I s  

the mappbq will have a fixed poin t  

and i n  some region surrountling t h i s  point the mspping w i l l  converge t o  

%3 

Q48 into another 

( n & 6 9 
1 

' which maps onto i t ee l f ,  4 ,  

d p  However, this convergent? evident3y does not hold for all of 
' 1  
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since f o r  some i n i t i a l  points  t he  process leads t o  the neighbor- =40 ' 
hoorl of t h e  "false solut ion" 

converges t o  # 
cycle - i.e. if t h e  i n i t i a l  point is located on t h a t  boundary, the  

mapping causes the  r e su l t i ng  s e t  of coe f f i c i en t s  t o  wander along the  

boundary without e i t h e r  converging t o  

6: . The region frop which the  i t e r a t i o n  
n thus has a boundary, which WiU. represent a l i m i t  
1 

# n  o r  approaching 
1 

nonzero 
In one simulation theAcoeff ic ients  of +: were 

8; = 10 

ff 5 - 2.0 
4 

8 ' 2  
2 

8 = 3.315 
6 

( for  the  corresponding , the signs of t h e  m = 2 terms are  

reversed). "he coe f f i c i en t s  of t h e  i n i t i a l  f i e ld  were chosen as 

= 10 0 
el 

1 
g = 2  

2 

are  

h For A =  1 t h e  last two coe f f i c i en t s  of t he  i n i t i a l  f i e l d  equal t o  

coef f ic ien ts  of the  'lfalse so lu t lcn"  3 ," and the  recursion i n  t h a t  

case heads f o r  t h a t  solution ( the spurious term g1 is whit t le& down 
2 

in the  process),  On t he  ather hanit, if A = 0 t h e  recursion heads 

f o r  t he  "true" solution 9"  . The t r a n s i t i o n ,  corresponding t a  a limit 
1 

cycle, occurs near A = 0.102 ana when t h a t  value w a s  used, as many 

L L ~  6 i t e r a t i o n s  were canpleted before a c l e a r  trend became evident. 
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CAPTIONS TO TABLES 

Table 1 Deviations of a m o d e l  geomagnetic field,derived by means of 
F ,from the “true” f i e l d  it i s  supposed t o  represent, i n  a com- 
puter simulation. The input field is given by a scalar p o t e n t i d  

with 120 coefficients (rima= 101, the number of points is 1440 
and 2 i terations m e  used, except fo r  one case where the 
resul ts  of 3 i terat ions are also shown f o r  ccmparison. All 
results are i n  units of 10 -4 

Table 2 Some of the differences 4 g  = g(m0ael) - g(true),  where g 

stands for one of the harmonic coefficients B, or  hn i n  a 
simulated recovery of y from F ,4/described i n  Table 1 
Here I$, denotes the r a t io  between a term i n  a Backus sequence 

having the type and Indices indicated on the table and the 
leading tern of its sequence (these Yatios are l i_~’ ,rd in Table k ! ,  
while R is  the r a t i o  between corresponding values of Ag . 

m m 
as 

Table 3 Results s k t l a r  t o  those of Table 1 , with 8 sbllar input 
model and gpterm recovery i n  3 iterations, for cases in  which 

data points are spread out aver a spherical s’mll bounded 

by ro 2 b 

Table 4 Ratios <+2k /e derived from the recursion relation A-1-1 



No. of terms 

in recovery 

~ F / F  

Worst 6 F/F 

b a n  G>(radianz;) 

Worst SA(radians 1 
I 

63 

20 

222 

2139 

- 
99 

3 iter. 1 2 iter. 

Table 1 



I 

v 

F1 

C7 

-? 
4 
I 

I 

I 1 1 1  
I 



6 d  r0 i 
Mean 6F/F 

Worst 6 F/F 

Mean %A 

worst 

31.4 

7-21 

79.9 

9-17 

135 a 2  

Tabk 3 
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